Lipid suppression via double inversion recovery with symmetric frequency sweep for robust 2D‐GRAPPA‐accelerated MRSI of the brain at 7 T

نویسندگان

  • Gilbert Hangel
  • Bernhard Strasser
  • Michal Považan
  • Stephan Gruber
  • Marek Chmelík
  • Martin Gajdošík
  • Siegfried Trattnig
  • Wolfgang Bogner
چکیده

This work presents a new approach for high-resolution MRSI of the brain at 7 T in clinically feasible measurement times. Two major problems of MRSI are the long scan times for large matrix sizes and the possible spectral contamination by the transcranial lipid signal. We propose a combination of free induction decay (FID)-MRSI with a short acquisition delay and acceleration via in-plane two-dimensional generalised autocalibrating partially parallel acquisition (2D-GRAPPA) with adiabatic double inversion recovery (IR)-based lipid suppression to allow robust high-resolution MRSI. We performed Bloch simulations to evaluate the magnetisation pathways of lipids and metabolites, and compared the results with phantom measurements. Acceleration factors in the range 2-25 were tested in a phantom. Five volunteers were scanned to verify the value of our MRSI method in vivo. GRAPPA artefacts that cause fold-in of transcranial lipids were suppressed via double IR, with a non-selective symmetric frequency sweep. The use of long, low-power inversion pulses (100 ms) reduced specific absorption rate requirements. The symmetric frequency sweep over both pulses provided good lipid suppression (>90%), in addition to a reduced loss in metabolite signal-to-noise ratio (SNR), compared with conventional IR suppression (52-70%). The metabolic mapping over the whole brain slice was not limited to a rectangular region of interest. 2D-GRAPPA provided acceleration up to a factor of nine for in vivo FID-MRSI without a substantial increase in g-factors (<1.1). A 64 × 64 matrix can be acquired with a common repetition time of ~1.3 s in only 8 min without lipid artefacts caused by acceleration. Overall, we present a fast and robust MRSI method, using combined double IR fat suppression and 2D-GRAPPA acceleration, which may be used in (pre)clinical studies of the brain at 7 T.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Algorithm for Lipid Suppression by Real-Time Isotropic Filter Design in Spectroscopic Brain Imaging

Introduction: Estimates of brain metabolites using whole-slice or large-volume magnetic resonance spectroscopic imaging (MRSI) are severely hampered by strong lipid signals even though the interfering signal arises from regions outside of the brain, namely subcutaneous tissue, scalp, and bone marrow. Many lipid suppression methods have been proposed, including outer-volume suppression (OVS) [1-...

متن کامل

(2 + 1)D‐CAIPIRINHA accelerated MR spectroscopic imaging of the brain at 7T

PURPOSE To compare a new parallel imaging (PI) method for multislice proton magnetic resonance spectroscopic imaging (1 H-MRSI), termed (2 + 1)D-CAIPIRINHA, with two standard PI methods: 2D-GRAPPA and 2D-CAIPIRINHA at 7 Tesla (T). METHODS (2 + 1)D-CAIPIRINHA is a combination of 2D-CAIPIRINHA and slice-CAIPIRINHA. Eight healthy volunteers were measured on a 7T MR scanner using a 32-channel hea...

متن کامل

3D Cartesian and Elliptical GRAPPA Based Spectroscopic Imaging of Gliomas at 3 Tesla

Introduction: 3D MR spectroscopic imaging (3D MRSI) is a powerful tool for diagnosis of brain tumors but long acquisition times in the order of 20-30 minutes causes patient discomfort and motion artifacts. In recent years, several pulse sequence developments proposing different trajectories in k-space such as elliptical sampling (sampling the central elliptical portion of k-space) or echo-plana...

متن کامل

Tailored RF pulse optimization for magnetization inversion at ultra high field

The radiofrequency (RF) transmit field is severely inhomogeneous at ultrahigh field due to both RF penetration and RF coil design issues. This particularly impairs image quality for sequences that use inversion pulses such as magnetization prepared rapid acquisition gradient echo and limits the use of quantitative arterial spin labeling sequences such as flow-attenuated inversion recovery. Here...

متن کامل

Removal of Nuisance Signal from Sparsely Sampled H-MRSI Data Using Physics-based Spectral Bases

A novel nuisance removal method is proposed for 1H-MRSI. The method uses spectral bases generated for water and subcutaneous lipids using quantum simulation, and can perform nuisance signal removal directly from (k,t)-space data. Consequently, the proposed method is able to handle sparsely sampled MRSI data, which provides a desirable flexibility for designing accelerated 1H-MRSI data acquisiti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 28  شماره 

صفحات  -

تاریخ انتشار 2015